Altex Thinner #20

Resene Paint Australia Ltd - Industrial & Marine Division

29/11/2013 Chemwatch: 9-41666 Print Date: 29/11/2013 Version No: 1.4 Issue Date:

Safety Data Sheet according to HSNO Regulations S.GHS.NZL.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Altex Thinner #20 Product name: **Chemical Name:** Not Applicable

PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL Proper shipping name:

(including paint thinning or reducing compound)

Chemical formula: Not Applicable Other means of identification: Not Available CAS number: Not Applicable

Relevant identified uses of the substance or mixture and uses advised against

The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Relevant identified uses:

Before starting consider control of exposure by mechanical ventilation.

Details of the supplier of the safety data sheet

Resene Paint Australia Ltd - Industrial & Registered company name: Marine Division

7 Production Avenue, Molendinar, Queensland, Address: 4214, AUSTRALIA Not Applicable

Telephone: +61 7 55126600 +61 7 55126697 Fax: Not Available Website:

Not Available Email:

Emergency telephone number

Association / Organisation: Not Available

Emergency telephone numbers: +61 7 55126600 (8am-5pm Mon - Fri) Other emergency telephone numbers: Australian Poisons Centre 131 126

CHEMWATCH EMERGENCY RESPONSE

Primary Number Alternative Number 1 Alternative Number 2 +800 2436 2255 +612 9186 1132 Not Available Once connected and if the message is not in your prefered language then please dial 01

SECTION 2 Hazards identification

Classification of the substance or mixture

Considered a Hazardous Substance according to the criteria of the New Zealand Hazardous Substances New Organisms legislation. Classified as Dangerous Goods for transport purposes.

GHS Classification^[1]:

Reproductive Toxicity Category 2, STOT - RE Category 2, Flammable Liquid Category 3, Eye Irritation Category 2A

Legend:1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from EC Directive 1272/2008 - Annex VI

Determined by Chemwatch using GHS/HSNO criteria:

3.1C, 6.4A, 6.8B, 6.9B (inhalation)

GHS label elements

WARNING Signal word:

Hazard statement(s):

H226	Flammable liquid and vapour
H319	Causes serious eye irritation

Suspected of damaging fertility or the unborn child

H373 May cause damage to organs through prolonged or repeated exposure

Supplementary statement(s):

Not Applicable

Precautionary state	ement(s): Prevention
P201	Obtain special instructions before use.
P202	Do not handle until all safety precautions have been read and understood.
P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.
P233	Keep container tightly closed.
P240	Ground/bond container and receiving equipment.
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.
P242	Use only non-sparking tools.
P243	Take precautionary measures against static discharge.
P260	Do not breathe dust/fume/gas/mist/vapours/spray.
P264	Wash all exposed external body areas thoroughly after handling.
P280	Wear protective gloves/protective clothing/eye protection/face protection.

Precautionary statement(s): Response

P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower.
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P308+P313	IF exposed or concerned: Get medical advice/attention.
P314	Get medical advice/attention if you feel unwell.
P337+P313	If eye irritation persists: Get medical advice/attention.
P370+P378	In case of fire: Use to extinguish.

Precautionary statement(s): Storage

P403+P235	Store in a well-ventilated place. Keep cool.
D405	Store locked up

Precautionary statement(s): Disposal

P501 Dispose of contents/container to authorised chemical landfill or if organic to high temperature incineration

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
Not Available	50-60	propylene glycol monomethyl ether acetate
141-78-6	30-40	ethyl acetate
108-88-3	1-10	toluene

SECTION 4 First aid measures

NZ Poisons Centre 0800 POISON (0800 764 766) | NZ Emergency Services: 111

Description of first aid measures

Eye Contact:

If this product comes in contact with the eyes:

- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact:

If skin contact occurs:

- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- · Seek medical attention in event of irritation.

Inhalation:

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor.

Ingestion:

- If swallowed do **NOT** induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- · Seek medical advice.
- If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for

Page 3 of 9

Chemwatch: 9-41666 Version No: 1.4

Altex Thinner #20

difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

BASIC TREATMENT

• Establish a patent airway with suction where necessary.

- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for pulmonary oedema .
- · Monitor and treat, where necessary, for shock.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
- · Give activated charcoal.

ADVANCED TREATMENT

Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.

- Positive-pressure ventilation using a bag-valve mask might be of use
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications
- Treat seizures with diazepam.
- · Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- · Consult a toxicologist as necessary

BRONSTEIN, A.C. and CÜRRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

SECTION 5 Firefighting measures

Extinguishing media

- Alcohol stable foam.
- Dry chemical powder.
- · BCF (where regulations permit).
- · Carbon dioxide
- · Water spray or fog Large fires only

Special hazards arising from the substrate or mixture

Fire Incompatibility:

• Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

Fire Fighting:

- Alert Fire Brigade and tell them location and nature of hazard.
- · May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- If safe, switch off electrical equipment until vapour fire hazard removed.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- · Avoid spraying water onto liquid pools.
- **DO NOT** approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.

Fire/Explosion Hazard:

- · Liquid and vapour are flammable.
- Moderate fire hazard when exposed to heat or flame.
- Vapour forms an explosive mixture with air.
- · Moderate explosion hazard when exposed to heat or flame.
- Vapour may travel a considerable distance to source of ignition.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).

&Combustion products include:

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

Minor Spills:

- Remove all ignition sources.
- · Clean up all spills immediately
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Contain and absorb small quantities with vermiculite or other absorbent material.
- Wipe up
- · Collect residues in a flammable waste container.

Major Spills:

- · Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- · Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- No smoking, naked lights or ignition sources.
- · Increase ventilation.
- Stop leak if safe to do so.
- Water spray or fog may be used to disperse /absorb vapour.

Personal Protective Equipment advice is contained in Section 8 of the MSDS.

SECTION 7 Handling and storage

Precautions for safe handling

Safe handling

- Containers, even those that have been emptied, may contain explosive vapours.
- Do NOT cut, drill, grind, weld or perform similar operations on or near containers.

Contains low boiling substance:

Storage in sealed containers may result in pressure buildup causing violent rupture of containers not rated appropriately.

- · Check for bulging containers.
- Vent periodically
- Always release caps or seals slowly to ensure slow dissipation of vapours
- DO NOT allow clothing wet with material to stay in contact with skin

The tendency of many ethers to form explosive peroxides is well documented.

Other information

- Store in original containers in approved flammable liquid storage area.
- Store away from incompatible materials in a cool, dry, well-ventilated area
- DO NOT store in pits, depressions, basements or areas where vapours may be trapped
- No smoking, naked lights, heat or ignition sources.
- Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel adequate security must be provided so that
 unauthorised personnel do not have access.
- Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances.
- Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems.
- Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas detectors.
- Keep adsorbents for leaks and spills readily available.

Conditions for safe storage, including any incompatibilities

Suitable container:

- Packing as supplied by manufacturer.
- Plastic containers may only be used if approved for flammable liquid.
- Check that containers are clearly labelled and free from leaks
- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.
- For materials with a viscosity of at least 2680 cSt. (23 deg. C)
- For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
- Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.

Storage incompatibility:

Toluene:

- reacts violently with strong oxidisers, bromine, bromine trifluoride, chlorine, hydrochloric acid/ sulfuric acid mixture, 1,3-dichloro-5,5-dimethyl-2,4-imidazolidindione, dinitrogen tetraoxide, fluorine, concentrated nitric acid, nitrogen dioxide, silver chloride, sulfur dichloride, uranium fluoride, vinyl acetate
- forms explosive mixtures with strong acids, strong oxidisers, silver perchlorate, tetranitromethane
- is incompatible with bis-toluenediazo oxide
- attacks some plastics, rubber and coatings
- may generate electrostatic charges, due to low conductivity, on flow or agitation.

For alkyl aromatics:

The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring.

• Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) - this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen

Package Material Incompatibilities:

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
New Zealand Workplace Exposure Standards (WES)	ethyl acetate	Ethyl acetate	720 (mgm3) / 200 (ppm)	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	toluene	Toluene	188 (mgm3) / 50 (ppm)	Not Available	Not Available	Skin absorption

Emergency Limi

Emergency Emilia				
Ingredient	TEEL-0	TEEL-1	TEEL-2	TEEL-3
ethyl acetate	400(ppm)	400(ppm)	400(ppm)	2000(ppm)

Page **5** of **9**Chemwatch: 9-41666

Version No: 1.4

Altex Thinner #20

toluene	200(ppm)	200(ppm)	510(ppm)	2900(ppm)	
Ingredient	Original	IDLH		Revised IDLH	
ethyl acetate	10,000(pp	10,000(ppm)		2,000 [LEL](ppm)	
toluene	2,000(ppm) 500(ppm)		2,000(ppm)		

Exposure controls

Appropriate engineering controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will twoically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Personal protection

Eve and face protection:

- · Safety glasses with side shields.
- · Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection:

See Hand protection below

Hand protection:

- Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

For esters:

Do NOT use natural rubber, butyl rubber, EPDM or polystyrene-containing materials.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and

has to be observed when making a final choice.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

Body protection

See Other protection below

Other protection:

- Overalls
- PVC Apron.
- PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Ensure there is ready access to a safety shower
- Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets), non sparking safety footwear.

Thermal hazards:

Recommended material(s):

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

Altex Thinner #20

Not Available

Material	СРІ
----------	-----

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

*Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection:

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	Air-line*	A-2	A-PAPR-2 ^
up to 20 x ES	-	A-3	-
20+ x ES	-	Air-line**	-

- * Continuous-flow; ** Continuous-flow or positive pressure demand
- ^ Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

SECTION 9 Physical and chemical properties

Chemwatch: 9-41666

Altex Thinner #20

Appearance

Note that all of the monopropylene glycol ethers may exist in two isomeric forms, alpha or beta. The alpha form, which is thermodynamically favored during synthesis, consists of a secondary alcohol configuration. The beta form consists of a primary alcohol. The two isomeric forms are shown above. The di- and tripropylene glycol ethers may form up to 4 and 8 isomeric forms, respectively. Even so, all isomers exhibit either the "alpha" or "beta" configuration, existing as secondary or primary alcohols, respectively. The distribution of isomeric forms for the di- and tripropylene glycols, as with the mono-PGEs, also results in predominantly the alpha form (i.e., a secondary alcohol). It should be noted that only the alpha isomer and isomeric mixtures (consisting predominantly of the alpha isomer) are produced commercially; the purified beta isomer is not produced at this time.

Physical state	Liquid	Relative density (Water = 1)	0.93
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	401
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	114	Molecular weight (g/mol)	Not Available
Flash point (°C)	24	Taste	Not Available
Evaporation rate	3.1	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	8.6	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	1.8	Volatile Component (%vol)	100
Vapour pressure (kPa)	4.6	Gas group	Not Available
Solubility in water (g/L)	Immiscible	pH as a solution(1%)	Not Available
Vapour density (Air = 1)	3.8		

SECTION 10 Stability and reactivity

Reactivity:

See section 7

Chemical stability:

- Presence of incompatible materials.
- · Product is considered stable.
- Hazardous polymerisation will not occur.

Possibility of hazardous reactions:

See section 7

Conditions to avoid:

See section 7

Incompatible materials:

See section 7

Hazardous decomposition products:

See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled:

Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.

Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Mild eye, nose and throat irritation occurs at 400 ppm ethyl acetate with unacclimated persons. Production workers with regular exposure may intermittently tolerate 1500 ppm for periods up to 3 months without adverse symptoms.

Inhalation hazard is increased at higher temperatures.

Mice exposed at up to 3000 ppm PGMEA 6 hr/day for a total of 9 days during an 11-day period showed no pronounced effect on the weights of liver, kidneys, heart, spleen, thymus or testes. Histopathological examination revealed degeneration of the olfactory epithelium in mice exposed at 300 ppm for the same time.

Ingestion:

Accidental ingestion of the material may be damaging to the health of the individual.

Acute intoxication by ethyl acetate causes impaired coordination, exhilaration, slurred speech, vertigo, flushed face, nausea, vomiting, and may progress to stupor, coma and death may result from respiratory or circulation failure.

Skin Contact

Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.

Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

Repeated application of commercial grade PGMEA to the skin of rabbits for 2-weeks caused slight redness and very slight exfoliation.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye

Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals.

Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

Undiluted propylene glycol monomethyl ether acetate (PGMEA) causes moderate discomfort, slight conjunctival redness and slight corneal injury in rabbits

Chemwatch: 9-41666

Altex Thinner #20

The liquid produces a high level of eye discomfort and is capable of causing pain and severe conjunctivitis. Corneal injury may develop, with possible permanent impairment of vision, if not promptly and adequately treated.

Chronic

Harmful: danger of serious damage to health by prolonged exposure through inhalation.

Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests.

Exposure to the material may cause concerns for humans owing to possible developmental toxic effects, generally on the basis that results in appropriate animal studies provide strong suspicion of developmental toxicity in the absence of signs of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not a secondary non-specific consequence of other toxic effects.

On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Repeated exposure to higher concentrations of propylene glycol monomethyl ether acetate (PGMEA) (1000 ppm and above) causes mild liver and kidney damage in animals.

A minor component, 2-methoxy-1-propyl acetate (the beta-isomer) produced birth defects on inhalation exposure of pregnant rabbits at 545 ppm, but not at 145 or 36 ppm; maternal and embryo/foetal toxicity on inhalation exposure of pregnant rabbits at applied dosages of 1000 and 2000 mg/kg of body weight per day during the critical period or embryo/foetal development. In a further study, no developmental effects were seen following exposure of pregnant rats at air concentrations of commercial propylene glycol monomethyl ether acetate (containing 3-5% of the minor component) up to 4000 ppm; slight maternal effects were seen at 5000 ppm and greater.

TOXICITY	IRRITATION
Altex Thinner #20	
Not Available	Not Available
ethyl acetate	
Inhalation (rat) LC50: 1600 ppm/8h	Eye (human): 400 ppm
Intraperitoneal (Mouse) LD50: 709 mg/kg	
Oral (Guinea pig) LD50: 5500 mg/kg	
Oral (Mouse) LD50: 4100 mg/kg	
Oral (Rabbit) LD50: 4935 mg/kg	
Oral (rat) LD50: 5620 mg/kg	
Not Available	Not Available
toluene	
Dermal (rabbit) LD50: 12124 mg/kg	Eye (rabbit): 2mg/24h - SEVERE
Inhalation (rat) LC50: >26700 ppm/1h	Eye (rabbit):0.87 mg - mild
Oral (rat) LD50: 636 mg/kg	Eye (rabbit):100 mg/30sec - mild
	Skin (rabbit):20 mg/24h-moderate
	Skin (rabbit):500 mg - moderate
Not Available	Not Available

Altex Thinner #20

for propylene glycol ethers (PGEs):

Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA); tripropylene glycol methyl ether (TPM).

Testing of a wide variety of propylene glycol ethers Testing of a wide variety of propylene glycol ethers has shown that propylene glycol-based ethers are less toxic than some ethers of the ethylene series. The common toxicities associated with the lower molecular weight homologues of the ethylene series, such as adverse effects on reproductive organs, the developing embryo and fetus, blood (haemolytic effects), or thymus, are not seen with the commercial-grade propylene glycol ethers. In the ethylene series, metabolism of the terminal hydroxyl group produces an alkoxyacetic acid. The reproductive and developmental toxicities of the lower molecular weight homologues in the ethylene series are due specifically to the formation of methoxyacetic and ethoxyacetic acids. Longer chain length homologues in the ethylene series are not associated with the reproductive toxicity but can cause haemolysis in sensitive species, also through formation of an alkoxyacetic acid.

The predominant alpha isomer of all the PGEs (thermodynamically favored during manufacture of PGEs) is a secondary alcohol incapable of forming an alkoxypropionic acid. In contrast beta-isomers are able to form the alkoxypropionic acids and these are linked to teratogenic effects (and possibly haemolytic effects).

This alpha isomer comprises greater than 95% of the isomeric mixture in the commercial product.

TOLUENE

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. For toluene:

Acute Toxicity

Humans exposed to intermediate to high levels of toluene for short periods of time experience adverse central nervous system effects ranging from headaches to intoxication, convulsions, narcosis, and death. Similar effects are observed in short-term animal studies.

Humans - Toluene ingestion or inhalation can result in severe central nervous system depression, and in large doses, can act as a narcotic. The ingestion of about 60 mL resulted in fatal nervous system depression within 30 minutes in one reported case.

Acute Toxicity:	Not Applicable	Carcinogenicity:	Not Applicable
Skin Irritation/Corrosion:	Not Applicable	Reproductivity:	Reproductive Toxicity Category 2
Serious Eye Damage/Irritation:	Eye Irritation Category 2A	STOT - Single Exposure:	Not Applicable
Respiratory or Skin sensitisation:	Not Applicable	STOT - Repeated Exposure:	STOT - RE Category 2
Mutagenicity:	Not Applicable	Aspiration Hazard:	Not Applicable

CMR STATUS

SKIN

toluene New Zealand Workplace Exposure Standards (WES) - Skin Skin absorption

SECTION 12 Ecological information

Toxicity

for propylene glycol ethers:

Environmental fate:

Most are liquids at room temperature and all are water-soluble.

Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol methyl ether acetate (DPMA); tripropylene glycol methyl

ether (TPM)

Environmental fate: Log octanol-water partition coefficients (log Kow's) range from 0.309 for TPM to 1.523 for DPnB. Calculated BCFs range from 1.47 for DPnB to 3.16 for DPMA and TPM, indicating low bioaccumulation. Henry's Law Constants, which indicate propensity to partition from water to air, are low for all category members, ranging from 5.7 x 10-9 atm-m3/mole for TPM to 2.7 x10-9 atm-m3/mole for PnB. Fugacity modeling indicates that most propylene glycol ethers are likely to partition roughly equally into the soil and water compartments in the environment with small to negligible amounts remaining in other environmental compartments (air, sediment, and aquatic biota). Propylene glycol ethers are unlikely to persist in the environment. Once in air, the half-life of the category members due to direct reactions with photochemically generated hydroxyl radicals, range from 2.0 hours for TPM to 4.6 hours for PnB.

Persistence and degradability		
Ingredient	Persistence: Water/Soil	Persistence: Air
Not Available	Not Available	Not Available
Bioaccumulative potential		
Ingredient	Bioaccumulation	
Not Available	Not Available	
Mobility in soil		
Ingredient	Mobility	
Not Available	Not Available	

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal:

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means.

Insure that the disposal of material is carried out in accordance with Hazardous Substances (Disposal) Regulations 2001.

SECTION 14 Transport information

Labels Required:

v					
Marine Pollutant: NO					
HAZCHEM: •3YE; •3Y					
Land transport (UN)					
UN number	1263		Packing group	III	
UN proper shipping name	PAINT (including paint, lacquenamel, stain, shellac, varnisl polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (inclupaint thinning or reducing compound)	h,	Environmental hazard	No relevant data	
Transport hazard class(es)	Class: 3		Special precautions for user	Special provisions	163; 223
	Subrisk:			limited quantity	5 L
Air transport (ICAO-IATA / DGR)					
UN number	1263		Packing group	III	
UN proper shipping name	Paint (including paint, lacque enamel, stain, shellac, varnisl polish, liquid filler and liquid lacquer base); Paint related material (including paint thinr or reducing compounds)	h,	Environmental hazard	No relevant data	
				Special provisions:	A3A72
Toward based short of			Special precautions for user	Cargo Only Packing Instructions:	366
	ICAO/IATA Class: 3			Cargo Only Maximum Qty / Pack:	220 L
	ICAO/IATA Class: 5			Passenger and Cargo Packing Instructions:	355
Transport hazard class(es)	ERG Code: 3L			Passenger and Cargo Maximum Qty / Pack:	60 L
	2.10 0000.			Passenger and Cargo Limited Quantity	Y344

Packing Instructions:

Passenger and Cargo Maximum Qty / Pack:

10 L

en va	AINT (including paint, lacquer, namel, stain, shellac solutions, arnish, polish, liquid filler and			
RI Pa	quid lacquer base) or PAINT RELATED MATERIAL (including aint thinning or reducing ompound)	Environmental hazard	No relevant data	
Transport hazard class(es)	IMDG Class: 3 IMDG Subrisk:	Special precautions for user	EMS Number: Special provisions: Limited Quantities:	F-E,S-E 163 223 955 5 L

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

This substance is to be managed using the conditions specified in an applicable Group Standard

HSR Number	Group Standard
HSR002662	Surface Coatings and Colourants (Flammable) Group Standard 2006

ethyl acetate(141-78-6) is found on the following regulatory lists

"New Zealand Workplace Exposure Standards (WES)", "New Zealand Hazardous Substances and New Organisms (HSNO) Act - Dangerous Goods", "New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data", "New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data", "New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification Data", "New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification Data", "New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification Data", "New Zealand Hazardous Substances List - GESAMP Hazard Profiles", "IMO IBC Code Chapter 17: Summary of minimum requirements", "FisherTransport Information", "Sigma-AldrichTransport Information", "IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk", "OECD List of High Production Volume (HPV) Chemicals", "International Council of Chemical Associations (ICCA) - High Production Volume List", "New Zealand Inventory of Chemicals (NZIoC)", "IOFI Global Reference List of Chemically Defined Substances", "WHO Food Additives Series - Flavouring agents considered for specifications only", "International Fragrance Association (IFRA) Survey: Transparency List", "Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A: Dangerous Goods List - RID 2013 (English)", "International Maritime Dangerous Goods Requirements (IMDG Code) - Substance Index", "International Air Transport Association (IATA) Dangerous Goods Requirements (IMDG Code)", "OSPAR National List of Candidates for Substitution – Norway"

toluene(108-88-3) is found on the following regulatory lists

"New Zealand Workplace Exposure Standards (WES)","United Nations Consolidated List of Products Whose Consumption and/or Sale Have Been Banned, Withdrawn, Severely Restricted or Not Approved by Governments","New Zealand Hazardous Substances and New Organisms (HSNO) Act - Dangerous Goods","New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data","International Fragrance Association (IFRA) Standards Prohibited", "International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs", "WHO Guidelines for Drinking-water Quality - Guideline values for chemicals that are of health significance in drinking-water", "IMO Provisional Categorization of Liquid Substances - List 3: (Trade-named) mixtures containing at least 99% by weight of components already assessed by IMO, presenting safety hazards", "IMO IBC Code Chapter 17: Summary of minimum requirements", "FisherTransport Information", "IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk", "Acros Transport Information", "OECD List of High Production Volume (HPV) Chemicals", "New Zealand Inventory of Chemicals (NZIoC)", "New Zealand Cosmetic Products Group Standard - Schedule 5 - Table 1: Components Cosmetic Products Must Not Contain Except Subject to the Restrictions and Conditions Laid Down", "Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A: Dangerous Goods List - RID 2013 (English)", "International Maritime Dangerous Goods Requirements (IMDG Code)", "OSPAR List of Chemicals for Priority Action", "GESAMP/EHS Composite List - GESAMP Hazard Profiles", "United Nations List of Precursors and Chemicals Frequently used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances - Table II"

SECTION 16 Other information

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net/references

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.