VALERO

MATERIAL SAFETY DATA SHEET

1. Product and Company Identification

Material name Cat Gasoline

Version # 03

 Issue date
 10-23-2010

 Revision date
 11-13-2012

 Supersedes date
 09-28-2012

 CAS #
 Mixture

 MSDS Number
 004

Product use Motor fuels.

Synonym(s) Light Catalytic Cracked Naphtha

See section 16 for complete information.

Manufacturer/Supplier Valero Marketing & Supply Company and Affiliates

P.O. Box 696000

San Antonio, TX 78269-6000

General Assistance 210-345-4593

Emergency 24 Hour Emergency 866-565-5220 1-800-424-9300 (CHEMTREC USA)

2. Hazards Identification

Physical state Liquid.

Appearance Light straw to red clear liquid.

Emergency overview DANGER!

Extremely flammable liquid and vapor - vapor may cause flash fire. Will be easily ignited by heat,

spark or flames. Heat may cause the containers to explode.

Harmful if inhaled, absorbed through skin, or swallowed. Aspiration may cause lung damage. Irritating to eyes, respiratory system and skin. In high concentrations, vapors and spray mists are narcotic and may cause headache, fatigue, dizziness and nausea. Contains benzene. Hydrogen sulfide, a highly toxic gas, may be present or released. Signs and symptoms of overexposure to hydrogen sulfide include respiratory and eye irritation, dizziness, nausea, coughing, a sensation of dryness and pain in the nose, and loss of consciousness. Odor does not provide a reliable indicator of the presence of hazardous levels in the atmosphere. Cancer hazard. Mutagen. May cause heritable genetic damage. May cause adverse reproductive effects - such as birth defects,

miscarriages, or infertility. Prolonged exposure may cause chronic effects. Toxic to aquatic organisms. May cause long-term adverse effects in the aquatic environment.

Static accumulating flammable materials can become electrostatically charged even in bonded and grounded equipment. Sparks may ignite material and vapor may cause flash fire (or

explosion).

OSHA regulatory status

This product is considered hazardous under 29 CFR 1910.1200 (Hazard Communication).

Potential health effects

Routes of exposure Inhalation. Ingestion. Skin contact. Eye contact.

Eyes Contact may irritate or burn eyes. Eye contact may result in corneal injury.

Skin Harmful if absorbed through skin. Irritating to skin. Frequent or prolonged contact may defat and

dry the skin, leading to discomfort and dermatitis.

Inhalation Harmful if inhaled. Irritating to respiratory system. In high concentrations, vapors and spray mists

are narcotic and may cause headache, fatigue, dizziness and nausea. May cause breathing disorders and lung damage. May cause cancer by inhalation. Prolonged inhalation may be

harmful.

Ingestion Harmful if swallowed. Ingestion may result in vomiting; aspiration (breathing) of vomitus into lungs

must be avoided as even small quantities may result in aspiration pneumonitis. Irritating to mouth,

throat, and stomach.

Target organs Blood. Eyes. Liver. Respiratory system. Skin. Kidneys. Central nervous system.

4172 Version #: 03 Revison date: 11-13-2012 Print date: 11-13-2012 1 / 18

Cat Gasoline

Prepared by 3E Company

Chronic effects Cancer hazard. Contains material which may have reproductive toxicity, teratogenetic or

mutagenic effects. Liver injury may occur. Kidney injury may occur. May cause central nervous system disorder (e.g., narcosis involving a loss of coordination, weakness, fatigue, mental confusion and blurred vision) and/or damage. Frequent or prolonged contact may defat and dry

the skin, leading to discomfort and dermatitis.

Signs and symptoms Irritation of nose and throat. Irritation of eyes and mucous membranes. Skin irritation.

Unconsciousness. Corneal damage. Narcosis. Cyanosis (blue tissue condition, nails, lips, and/or skin). Decrease in motor functions. Behavioral changes. Edema. Liver enlargement. Jaundice.

Conjunctivitis. Proteinuria. Defatting of the skin. Rash.

Potential environmental effects Toxic to aquatic organisms. May cause long-term adverse effects in the aquatic environment.

3. Composition / Information on Ingredients

Components	CAS#	Percent
Naphtha (petroleum), light catalytic cracked	64741-55-5	0 - 100
Hexane (Other Isomers)	96-14-0	0 - 30
Toluene	108-88-3	0 - 10
Xylene (o, m, p isomers)	1330-20-7	0 - 10
1,2,4-Trimethylbenzene	95-63-6	0 - 5
Benzene	71-43-2	0 - 5
Butylene	25167-67-3	0 - 5
Cumene	98-82-8	0 - 5
Cyclohexane	110-82-7	0 - 5
Ethylbenzene	100-41-4	0 - 5
Pentane	109-66-0	0 - 5
n-Heptane	142-82-5	0 - 3
n-Hexane	110-54-3	0 - 3
Cyclopentane	287-92-3	0 - 2
Naphthalene	91-20-3	0 - 2
n-Nonane	111-84-2	0 - 2
Hydrogen sulfide	7783-06-4	< 1

Composition comments

Small amount of hydrogen sulfide, a highly toxic gas, may be present, especially in the headspace of containers.

4. First Aid Measures

First aid procedures

Eye contact Immediately flush eyes with plenty of water for at least 15 minutes. Remove contact lenses, if

present and easy to do. Continue rinsing. Get medical attention.

Skin contact Remove contaminated clothing and shoes. Wash off immediately with soap and plenty of water.

Get medical attention if irritation develops or persists. Wash clothing separately before reuse. Destroy or thoroughly clean contaminated shoes. If high pressure injection under the skin occurs,

always seek medical attention.

Inhalation Move to fresh air. If breathing is difficult, give oxygen. If not breathing, give artificial respiration.

Get medical attention.

Ingestion Rinse mouth thoroughly. Do not induce vomiting without advice from poison control center. Do not

give mouth-to-mouth resuscitation. If vomiting occurs, keep head low so that stomach content

does not get into the lungs. Get medical attention immediately.

Notes to physician In case of shortness of breath, give oxygen. Keep victim warm. Keep victim under observation.

Symptoms may be delayed.

General advice If exposed or concerned: get medical attention/advice. Ensure that medical personnel are aware

of the material(s) involved, and take precautions to protect themselves. Show this safety data

sheet to the doctor in attendance. Wash contaminated clothing before re-use.

5. Fire Fighting Measures

Flammable properties

Flammable by OSHA criteria. Containers may explode when heated.

Extinguishing media

Suitable extinguishing

media

Water spray. Water fog. Foam. Dry chemical powder. Carbon dioxide (CO2).

Unsuitable extinguishing

media

Do not use a solid water stream as it may scatter and spread fire.

Protection of firefighters

Specific hazards arising from the chemical

Vapor may cause flash fire. Vapors can flow along surfaces to distant ignition source and flash back. Sensitive to static discharge.

Protective equipment and precautions for firefighters

Wear full protective clothing, including helmet, self-contained positive pressure or pressure demand breathing apparatus, protective clothing and face mask.

Fire fighting equipment/instructions

Wear full protective clothing, including helmet, self-contained positive pressure or pressure demand breathing apparatus, protective clothing and face mask. Withdraw immediately in case of rising sound from venting safety devices or any discoloration of tanks due to fire. Fight fire from maximum distance or use unmanned hose holders or monitor nozzles. Move containers from fire area if you can do it without risk. In the event of fire, cool tanks with water spray. Cool containers exposed to flames with water until well after the fire is out. For massive fire, use unmanned hose holders or monitor nozzles; if this is impossible, withdraw from area and let fire burn. Vapors may form explosive air mixtures even at room temperature. Prevent buildup of vapors or gases to explosive concentrations. Some of these materials, if spilled, may evaporate leaving a flammable residue. Water runoff can cause environmental damage. Use compatible foam to minimize vapor generation as needed.

Specific methods

In the event of fire and/or explosion do not breathe fumes. Use water spray to cool unopened containers.

Carbon monoxide. Carbon Dioxide. Sulfur oxides. Nitrogen oxides (NOx). Hydrocarbons.

Hazardous combustion products

6. Accidental Release Measures

Personal precautions

Keep unnecessary personnel away. Local authorities should be advised if significant spills cannot be contained. Keep upwind. Keep out of low areas. Ventilate closed spaces before entering. Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. See Section 8 of the MSDS for Personal Protective Equipment.

Environmental precautions

Gasoline may contain oxygenated blend products (Ethanol, etc.) that are soluble in water and therefore precautions should be taken to protect surface and groundwater sources from contamination. If facility or operation has an "oil or hazardous substance contingency plan", activate its procedures. Stay upwind and away from spill. Wear appropriate protective equipment including respiratory protection as conditions warrant. Do not enter or stay in area unless monitoring indicates that it is safe to do so. Isolate hazard area and restrict entry to emergency crew. Extremely flammable. Review Firefighting Measures, Section 5, before proceeding with clean up. Keep all sources of ignition (flames, smoking, flares, etc.) and hot surfaces away from release. Contain spill in smallest possible area. Recover as much product as possible (e.g. by vacuuming). Stop leak if it can be done without risk. Use water spray to disperse vapors. Use compatible foam to minimize vapor generation as needed. Spilled material may be absorbed by an appropriate absorbent, and then handled in accordance with environmental regulations. Prevent spilled material from entering sewers, storm drains, other unauthorized treatment or drainage systems and natural waterways. Contact fire authorities and appropriate federal, state and local agencies. If spill of any amount is made into or upon navigable waters, the contiguous zone, or adjoining shorelines, contact the National Response Center at 1-800-424-8802. For highway or railways spills, contact Chemtrec at 1-800-424-9300.

Methods for containment

Eliminate all ignition sources (no smoking, flares, sparks, or flames in immediate area). Stop leak if you can do so without risk. This material is a water pollutant and should be prevented from contaminating soil or from entering sewage and drainage systems and bodies of water. Dike the spilled material, where this is possible. Prevent entry into waterways, sewers, basements or confined areas.

3 / 18 Revison date: 11-13-2012 Print date: 11-13-2012

Methods for cleaning up

Use non-sparking tools and explosion-proof equipment.

Small Spills: Absorb spill with vermiculite or other inert material, then place in a container for chemical waste. Clean surface thoroughly to remove residual contamination. This material and its container must be disposed of as hazardous waste.

Large Spills: Use a non-combustible material like vermiculite, sand or earth to soak up the product and place into a container for later disposal. Prevent product from entering drains. Do not allow material to contaminate ground water system. Should not be released into the environment.

Other information

Clean up in accordance with all applicable regulations.

7. Handling and Storage

Handling

Eliminate sources of ignition. Avoid spark promoters. Ground/bond container and equipment. These alone may be insufficient to remove static electricity.

Wear personal protective equipment. Do not breathe gas/fumes/vapor/spray. Avoid contact with eyes, skin, and clothing. Do not taste or swallow. Avoid prolonged exposure. Use only with adequate ventilation. Wash thoroughly after handling. The product is extremely flammable, and explosive vapor/air mixtures may be formed even at normal room temperatures. DO NOT handle, store or open near an open flame, sources of heat or sources of ignition. Protect material from direct sunlight. Take precautionary measures against static discharges. All equipment used when handling the product must be grounded. Use non-sparking tools and explosion-proof equipment. When using, do not eat, drink or smoke. Avoid release to the environment.

Storage

Flammable liquid storage. Do not handle or store near an open flame, heat or other sources of ignition. This material can accumulate static charge which may cause spark and become an ignition source. The pressure in sealed containers can increase under the influence of heat. Keep container tightly closed in a cool, well-ventilated place. Keep away from food, drink and animal feedingstuffs. Keep out of the reach of children.

8. Exposure Controls / Personal Protection

Occupational exposure limits

US. ACGIH Threshold Limit Values

Components	Туре	Value	
1,2,4-Trimethylbenzene (CAS 95-63-6)	TWA	25 ppm	
Benzene (CAS 71-43-2)	STEL	2.5 ppm	
	TWA	0.5 ppm	
Butylene (CAS 25167-67-3)	TWA	250 ppm	
Cumene (CAS 98-82-8)	TWA	50 ppm	
Cyclohexane (CAS 110-82-7)	TWA	100 ppm	
Cyclopentane (CAS 287-92-3)	TWA	600 ppm	
Ethylbenzene (CAS 100-41-4)	TWA	20 ppm	
Hexane (Other Isomers) (CAS 96-14-0)	STEL	1000 ppm	
	TWA	500 ppm	
Hydrogen sulfide (CAS 7783-06-4)	STEL	5 ppm	
·	TWA	1 ppm	
Naphthalene (CAS 91-20-3)	STEL	15 ppm	
	TWA	10 ppm	
n-Heptane (CAS 142-82-5)	STEL	500 ppm	
	TWA	400 ppm	
n-Hexane (CAS 110-54-3)	TWA	50 ppm	
n-Nonane (CAS 111-84-2)	TWA	200 ppm	
Pentane (CAS 109-66-0)	TWA	600 ppm	
Toluene (CAS 108-88-3)	TWA	20 ppm	
Xylene (o, m, p isomers) (CAS 1330-20-7)	STEL	150 ppm	
	TWA	100 ppm	

Cat Gasoline

4172 Version #: 03 Revison date: 11-13-2012 Print date: 11-13-2012 4 / 18

Components	Туре	Value	
Benzene (CAS 71-43-2)	STEL	5 ppm	
	TWA	1 ppm	
US. OSHA Table Z-1 Limits for Air	Contaminants (29 CFR 1910.	1000)	
Components	Туре	Value	
Cumene (CAS 98-82-8)	PEL	245 mg/m3	
		50 ppm	
Cyclohexane (CAS	PEL	1050 mg/m3	
110-82-7)		· ·	
		300 ppm	
Ethylbenzene (CAS	PEL	435 mg/m3	
100-41-4)			
		100 ppm	
Naphthalene (CAS 91-20-3)	PEL	50 mg/m3	
		10 ppm	
n-Heptane (CAS 142-82-5)	PEL	2000 mg/m3	
		500 ppm	
n-Hexane (CAS 110-54-3)	PEL	1800 mg/m3	
		500 ppm	
Pentane (CAS 109-66-0)	PEL	2950 mg/m3	
		1000 ppm	
Xylene (o, m, p isomers)	PEL	435 mg/m3	
(ČAS 1330-20-7)		•	
		100 ppm	
US. OSHA Table Z-2 (29 CFR 1910.	1000)		
Components	Туре	Value	
Benzene (CAS 71-43-2)	Ceiling	25 ppm	
	TWA	10 ppm	
Hydrogen sulfide (CAS	Ceiling	20 ppm	
7783-06-4)	- ···		
Toluene (CAS 108-88-3)	Ceiling	300 ppm	
	TWA	200 ppm	
Canada. Alberta OELs (Occupation	nal Health & Safety Code, Sch	edule 1, Table 2)	
Components	Туре	Value	
1,2,4-Trimethylbenzene	TWA	123 mg/m3	
(CAS 95-63-6)		0.5	
		25 ppm	
Benzene (CAS 71-43-2)	STEL	8 mg/m3	
		2.5 ppm	
	TWA	1.6 mg/m3	
		0.5 ppm	
Cumene (CAS 98-82-8)	TWA	246 mg/m3	
		50 ppm	
Cyclohexane (CAS 110-82-7)	TWA	344 mg/m3	
		100 ppm	
Cyclopentane (CAS	TWA	1720 mg/m3	
287-92-3)		2090	
,		600 ppm	
Ethylbenzene (CAS	STEL	543 mg/m3	
100-41-4)		Č	
		125 ppm	
	TWA	434 mg/m3	
		100 nnm	

Cat Gasoline

4172 Version #: 03 Revison date: 11-13-2012 Print date: 11-13-2012 5 / 18

STEL

100 ppm

1000 ppm

3500 mg/m3

(CAS 96-14-0)

Hexane (Other Isomers)

Canada. Alberta OELs (Occupational Health & Safety Code, Schedule 1, Table 2)

Components	Туре	Value	
	TWA	1760 mg/m3	
		500 ppm	
Hydrogen sulfide (CAS 7783-06-4)	Ceiling	21 mg/m3	
		15 ppm	
	TWA	14 mg/m3	
		10 ppm	
Naphthalene (CAS 91-20-3)	STEL	79 mg/m3	
		15 ppm	
	TWA	52 mg/m3	
		10 ppm	
n-Heptane (CAS 142-82-5)	STEL	2050 mg/m3	
,		500 ppm	
	TWA	1640 mg/m3	
		400 ppm	
n-Hexane (CAS 110-54-3)	TWA	176 mg/m3	
,		50 ppm	
n-Nonane (CAS 111-84-2)	TWA	1050 mg/m3	
,		200 ppm	
Pentane (CAS 109-66-0)	TWA	1770 mg/m3	
,		600 ppm	
Toluene (CAS 108-88-3)	TWA	188 mg/m3	
,		50 ppm	
Xylene (o, m, p isomers) (CAS 1330-20-7)	STEL	651 mg/m3	
,		150 ppm	
	TWA	434 mg/m3	
		100 ppm	
		• •	

Canada. British Columbia OELs. (Occupational Exposure Limits for Chemical Substances, Occupational Health and Safety Regulation 296/97, as amended)

Components	Туре	Value	
1,2,4-Trimethylbenzene (CAS 95-63-6)	TWA	25 ppm	
Benzene (CAS 71-43-2)	STEL	2.5 ppm	
	TWA	0.5 ppm	
Cumene (CAS 98-82-8)	STEL	75 ppm	
	TWA	25 ppm	
Cyclohexane (CAS 110-82-7)	TWA	100 ppm	
Cyclopentane (CAS 287-92-3)	TWA	600 ppm	
Ethylbenzene (CAS 100-41-4)	TWA	20 ppm	
Hexane (Other Isomers) (CAS 96-14-0)	TWA	200 ppm	
Hydrogen sulfide (CAS 7783-06-4)	Ceiling	10 ppm	
Naphthalene (CAS 91-20-3)	STEL	15 ppm	
	TWA	10 ppm	
n-Heptane (CAS 142-82-5)	STEL	500 ppm	
	TWA	400 ppm	
n-Hexane (CAS 110-54-3)	TWA	20 ppm	
n-Nonane (CAS 111-84-2)	TWA	200 ppm	
Pentane (CAS 109-66-0)	TWA	600 ppm	
Toluene (CAS 108-88-3)	TWA	20 ppm	
Xylene (o, m, p isomers) (CAS 1330-20-7)	STEL	150 ppm	
	TWA	100 ppm	

 6 / 18

Canada. Ontario OELs. (Control of Exposure to Biological or Chemical Agents)

Components	Туре	Value	
1,2,4-Trimethylbenzene (CAS 95-63-6)	TWA	25 ppm	_
Benzene (CAS 71-43-2)	STEL	2.5 ppm	
	TWA	0.5 ppm	
Butylene (CAS 25167-67-3)	TWA	250 ppm	
Cumene (CAS 98-82-8)	TWA	50 ppm	
Cyclohexane (CAS 110-82-7)	TWA	100 ppm	
Cyclopentane (CAS 287-92-3)	TWA	600 ppm	
Ethylbenzene (CAS 100-41-4)	STEL	125 ppm	
	TWA	100 ppm	
Hexane (Other Isomers) (CAS 96-14-0)	STEL	1000 ppm	
	TWA	500 ppm	
Hydrogen sulfide (CAS 7783-06-4)	STEL	15 ppm	
•	TWA	10 ppm	
Naphthalene (CAS 91-20-3)	STEL	15 ppm	
	TWA	10 ppm	
n-Heptane (CAS 142-82-5)	STEL	500 ppm	
	TWA	400 ppm	
n-Hexane (CAS 110-54-3)	TWA	50 ppm	
n-Nonane (CAS 111-84-2)	TWA	200 ppm	
Pentane (CAS 109-66-0)	STEL	2210 mg/m3	
		750 ppm	
	TWA	1770 mg/m3	
		600 ppm	
Toluene (CAS 108-88-3)	TWA	20 ppm	
Xylene (o, m, p isomers) (CAS 1330-20-7)	STEL	150 ppm	
	TWA	100 ppm	

Canada. Quebec OELs. (Ministry of Labor - Regulation Respecting the Quality of the Work Environment)

Components	Туре	Value	
1,2,4-Trimethylbenzene (CAS 95-63-6)	TWA	123 mg/m3	
		25 ppm	
Benzene (CAS 71-43-2)	STEL	15.5 mg/m3	
		5 ppm	
	TWA	3 mg/m3	
		1 ppm	
Cumene (CAS 98-82-8)	TWA	246 mg/m3	
		50 ppm	
Cyclohexane (CAS 110-82-7)	TWA	1030 mg/m3	
		300 ppm	
Cyclopentane (CAS 287-92-3)	TWA	1720 mg/m3	
		600 ppm	
Ethylbenzene (CAS 100-41-4)	STEL	543 mg/m3	
		125 ppm	
	TWA	434 mg/m3	
		100 ppm	
Hexane (Other Isomers) (CAS 96-14-0)	STEL	3500 mg/m3	
•		1000 ppm	
	TWA	1760 mg/m3	

Cat Gasoline

4172 Version #: 03 Revison date: 11-13-2012 Print date: 11-13-2012 7 / 18

Canada. Quebec OELs. (Ministry of Labor - Regulation Respecting the Quality of the Work Environment)

Components	Туре	Value	
		500 ppm	
Hydrogen sulfide (CAS 7783-06-4)	STEL	21 mg/m3	
·		15 ppm	
	TWA	14 mg/m3	
		10 ppm	
Naphthalene (CAS 91-20-3)	STEL	79 mg/m3	
		15 ppm	
	TWA	52 mg/m3	
		10 ppm	
n-Heptane (CAS 142-82-5)	STEL	2050 mg/m3	
		500 ppm	
	TWA	1640 mg/m3	
		400 ppm	
n-Hexane (CAS 110-54-3)	TWA	176 mg/m3	
		50 ppm	
n-Nonane (CAS 111-84-2)	TWA	1050 mg/m3	
,		200 ppm	
Pentane (CAS 109-66-0)	TWA	350 mg/m3	
,		120 ppm	
Toluene (CAS 108-88-3)	TWA	188 mg/m3	
,		50 ppm	
Xylene (o, m, p isomers) (CAS 1330-20-7)	STEL	651 mg/m3	
,		150 ppm	
	TWA	434 mg/m3	
		100 ppm	
Marrian Occupational Frances		• •	

Mexico. Occupational Exposure Limit Values

Туре	Value	
STEL	170 mg/m3	
	35 ppm	
TWA	125 mg/m3	
	25 ppm	
STEL	16 mg/m3	
	5 ppm	
TWA	3.2 mg/m3	
STEL		
TWA	* *	
STEL	1300 mg/m3	
	375 ppm	
TWA	1050 mg/m3	
	300 ppm	
STEL	545 mg/m3	
	125 ppm	
TWA	435 mg/m3	
STEL	3500 mg/m3	
	1000 ppm	
TWA	The state of the s	
	500 ppm	
	STEL TWA STEL TWA STEL TWA STEL TWA STEL TWA STEL TWA STEL	STEL 170 mg/m3 35 ppm TWA 125 mg/m3 25 ppm STEL 16 mg/m3 5 ppm TWA 3.2 mg/m3 1 ppm STEL 365 mg/m3 75 ppm TWA 245 mg/m3 50 ppm STEL 1300 mg/m3 TWA 1050 mg/m3 STEL 545 mg/m3 TWA 1050 ppm TWA 1050 mg/m3

Cat Gasoline

Mexico. Occupational Exposure Limit Values

Components	Туре	Value	
Hydrogen sulfide (CAS 7783-06-4)	STEL	21 mg/m3	
		15 ppm	
	TWA	14 mg/m3	
		10 ppm	
Naphthalene (CAS 91-20-3)	STEL	75 mg/m3	
		15 ppm	
	TWA	50 mg/m3	
		10 ppm	
n-Heptane (CAS 142-82-5)	STEL	2000 mg/m3	
		500 ppm	
	TWA	1600 mg/m3	
		400 ppm	
n-Hexane (CAS 110-54-3)	TWA	176 mg/m3	
,		50 ppm	
n-Nonane (CAS 111-84-2)	STEL	1300 mg/m3	
,		250 ppm	
	TWA	1050 mg/m3	
		200 ppm	
Pentane (CAS 109-66-0)	STEL	2250 mg/m3	
,		760 ppm	
	TWA	1800 mg/m3	
		600 ppm	
Toluene (CAS 108-88-3)	TWA	188 mg/m3	
,		50 ppm	
Xylene (o, m, p isomers) (CAS 1330-20-7)	STEL	655 mg/m3	
,		150 ppm	
	TWA	435 mg/m3	
		100 ppm	
ineering controls	Provide adequate general and legal	exhaust ventilation. Use process enclosures local exhaus	.4

Engineering controls

Provide adequate general and local exhaust ventilation. Use process enclosures, local exhaust ventilation, or other engineering controls to control airborne levels below recommended exposure limits. Use explosion-proof equipment.

Personal protective equipment

Eye / face protection Skin protection Wear safety glasses. If splash potential exists, wear full face shield or chemical goggles.

Wear chemical-resistant, impervious gloves. Full body suit and boots are recommended when handling large volumes or in emergency situations. Flame retardant protective clothing is

recommended.

Respiratory protection

Use a properly fitted, air-purifying or air-fed respirator complying with an approved standard if a risk assessment indicates this is necessary. Respirator selection must be based on known or anticipated exposure levels, the hazards of the product and the safe working limits of the selected respirator. If workplace exposure limits for product or components are exceeded, NIOSH approved equipment should be worn. Proper respirator selection should be determined by adequately trained personnel, based on the contaminants, the degree of potential exposure and published respiratory protection factors. This equipment should be available for nonroutine and emergency use.

General hygiene considerations

Consult supervisor for special handling instructions. Avoid contact with eyes. Avoid contact with skin. Keep away from food and drink. Wash hands before breaks and immediately after handling the product. Provide eyewash station and safety shower. Handle in accordance with good industrial hygiene and safety practice.

9. Physical & Chemical Properties

Appearance Light straw to red clear liquid.

Physical stateLiquid.FormLiquid.

Color Light straw to red clear.

Odor Characteristic Gasoline Odor (Strong).

Cat Gasoline

4172 Version #: 03 Revison date: 11-13-2012 Print date: 11-13-2012 9 / 18

Not available. **Odor threshold** Not available. pН Vapor pressure Not available. Vapor density < 4.4 Estimated

Boiling point > 97 °F (> 36.1 °C) Estimated Melting point/Freezing point 44 °F (6.7 °C) Estimated Solubility (water) Very slightly soluble. Specific gravity 0.77 (Water=1) (60°F)

> -58.3 °F (> -50.2 °C) Closed Cup Estimated Flash point

Flammability limits in air,

upper, % by volume

Flammability limits in air, lower, % by volume

1 %

Auto-ignition temperature > 550 °F (> 287.78 °C) **Evaporation rate** < 10.6 Estimated Essentialy 100% Percent volatile

Other data

Flammable IA Flash point class

10. Chemical Stability & Reactivity Information

Chemical stability Stable under normal temperature conditions and recommended use.

Conditions to avoid Heat, flames and sparks. Ignition sources. Contact with incompatible materials. Do not pressurize,

cut, weld, braze, solder, drill, grind or expose empty containers to heat, flame, sparks, static

electricity, or other sources of ignition; they may explode and cause injury or death.

Strong oxidizing agents. Reducing agents. Acids. Alkalis. Incompatible materials

Hazardous decomposition

products

Carbon oxides. Sulfur oxides. Nitrogen oxides (NOx). Hydrocarbons.

Possibility of hazardous Hazardous polymerization does not occur.

reactions

Toxicological data

11. Toxicological Information

i oxicological data		
Components	Species	Test Results
1,2,4-Trimethylbenzene (Ca	AS 95-63-6)	
Acute		
Dermal		
LD50	Rabbit	> 3160 mg/kg
Inhalation		
LC50	Rat	18000 mg/m3, 4 hours
Cumene (CAS 98-82-8)		
Acute		
Inhalation		
LC50	Mouse	2000 mg/l, 7 Hours
	Rat	8000 mg/l, 4 Hours
Oral		
LD50	Rat	1400 mg/kg
		2.91 g/kg
Cyclohexane (CAS 110-82	-7)	
Acute	,	
Oral		
LD50	Rat	12705 mg/kg
-		5 5

Cat Gasoline 10 / 18 4172 Version #: 03 Revison date: 11-13-2012 Print date: 11-13-2012

Components **Species Test Results** Ethylbenzene (CAS 100-41-4) Acute Dermal LD50 Rabbit > 5000 mg/kg Oral LD50 Rat 5.46 g/kg Hydrogen sulfide (CAS 7783-06-4) **Acute** Inhalation LC50 Mouse > 0.024 mg/l, 960 Minutes Rat > 0.38 mg/l, 960 Minutes Naphthalene (CAS 91-20-3) Acute Dermal LD50 Rabbit > 2 g/kg Oral LD50 Rat 490 mg/kg n-Heptane (CAS 142-82-5) **Acute** Inhalation LC50 Rat 103 mg/l, 4 Hours n-Nonane (CAS 111-84-2) **Acute** Inhalation LC50 Rat 3200 mg/l, 4 Hours Pentane (CAS 109-66-0) Acute Inhalation LC50 Rat 364 mg/l, 4 Hours Toluene (CAS 108-88-3) Acute Inhalation LC50 Rat 8000 mg/l, 4 Hours Oral LC50 636 mg/kg Rat Xylene (o, m, p isomers) (CAS 1330-20-7) Acute Oral LD50 Rat 4300 mg/kg Sensitization This substance may have a potential for sensitization which may provoke an allergic reaction among sensitive individuals. Harmful if inhaled, absorbed through skin, or swallowed. Harmful: may cause lung damage if **Acute effects** swallowed. Irritating to eyes, respiratory system and skin. In high concentrations, vapors and

Local effects

Cat Gasoline

US. ACGIH Threshold Limit Values

Benzene (CAS 71-43-2)

Naphthalene (CAS 91-20-3)

n-Hexane (CAS 110-54-3)

Can be absorbed through the skin.

Can be absorbed through the skin.

Can be absorbed through the skin.

4172 Version #: 03 Revison date: 11-13-2012 Print date: 11-13-2012 11 / 18

spray mists are narcotic and may cause headache, fatigue, dizziness and nausea.

Chronic effects

Repeated exposure of laboratory animals to high concentrations of gasoline vapors has cause kidney and liver damage. It has also caused cancer in rats and mice. Prolonged and repeated exposure to benzene may cause serious injury to blood forming organs and is associated with anemia and to the later development of acute myelogenous leukemia (AML). Toluene has been reported to decrease immunological responses and cause recordable hearing loss in laboratory animals. Contains organic solvents which in case of overexposure may depress the central nervous system causing dizziness and intoxication. Danger of serious damage to health by prolonged exposure. Prolonged or repeated overexposure may cause central nervous system, kidney, liver, and lung damage.

Subchronic effects

Subchronic inhalation of benzene by rats produced decreased white blood cell counts, decreased bone marrow cell activity, increased red blood cell activity and cataracts. Blood disorders may occur after prolonged inhalation, prolonged skin contact and/or ingestion. Liver and kidney damage may occur after prolonged and repeated exposure.

Carcinogenicity

ACGIH Carcinogens

Benzene (CAS 71-43-2) A1 Confirmed human carcinogen.

Ethylbenzene (CAS 100-41-4)

A3 Confirmed animal carcinogen with unknown relevance to

humans.

Naphthalene (CAS 91-20-3)

Toluene (CAS 108-88-3)

Xylene (o, m, p isomers) (CAS 1330-20-7)

A4 Not classifiable as a human carcinogen.

A4 Not classifiable as a human carcinogen.

A4 Not classifiable as a human carcinogen.

IARC Monographs. Overall Evaluation of Carcinogenicity

Benzene (CAS 71-43-2) 1 Carcinogenic to humans.

Cumene (CAS 98-82-8)

Ethylbenzene (CAS 100-41-4)

Naphthalene (CAS 91-20-3)

2B Possibly carcinogenic to humans.

2B Possibly carcinogenic to humans.

2B Possibly carcinogenic to humans.

Toluene (CAS 108-88-3)

Xylene (o, m, p isomers) (CAS 1330-20-7)

3 Not classifiable as to carcinogenicity to humans.

3 Not classifiable as to carcinogenicity to humans.

US NTP Report on Carcinogens: Anticipated carcinogen

Naphthalene (CAS 91-20-3) Reasonably Anticipated to be a Human Carcinogen.

US NTP Report on Carcinogens: Known carcinogen

Benzene (CAS 71-43-2) Known To Be Human Carcinogen.

US. OSHA Specifically Regulated Substances (29 CFR 1910.1001-1050)

Benzene (CAS 71-43-2) Cancer hazard.

Epidemiology

Contains benzene. Human epidemiology studies indicate that prolonged and/or repeated overexposure to benzene may cause damage to the blood-producing system and serious blood disorders, including leukemia. Animal tests suggest that prolonged and/or repeated overexposure to benzene may damage the embryo/fetus. The relevance of these animal studies to humans has not been fully established. Studies have shown a risk of spontaneous abortions in women exposed to high concentrations of organic solvents during pregnancy.

Mutagenicity

In in-vitro experiments, neither benzene, toluene nor xylene changed the number of sister-chromatid exchanges (SCEs) or the number of chromosomal aberrations in human lymphocytes. However, toluene and xylene caused a significant cell growth inhibition which was not observed with benzene in the same concentrations. In in-vivo experiments, toluene changed the number of sister-chromatid exchanges (SCEs) in human lymphocytes. Toluene may cause heritable genetic damage.

Neurological effects

Chronic exposure to high concentrations of various hydrocarbon blends may lead to polyneuropathy (peripheral nerve damage), characterized by progressive weakness and numbness in the extremities, loss of deep tendon reflexes and reduction of motor nerve conduction velocity. Numerous cases of polyneuritis have been reported following prolonged exposures to a petroleum fraction containing various isomers of heptane as major ingredients. May cause central nervous system disorder (e.g., narcosis involving a loss of coordination, weakness, fatigue) and/or damage.

Reproductive effects

Benzene, xylene and toluene have demonstrated animal effects of reproductive toxicity. Animal studies of benzene have shown testicular effects, alterations in reproductive cycles, chromosomal aberrations and embryo/fetotoxicity. Ethanol has demonstrated human effects of reproductive toxicity. May damage fertility or the unborn child. Can cause adverse reproductive effects - such as birth defects, miscarriages, or infertility. Avoid exposure to women during early pregnancy. Avoid contact during pregnancy/while nursing.

Teratogenicity

Abusive inhalation of toluene ("glue sniffing") has been reported to be associated with birth defects in the offspring of abusers. Rats exposed to benzene and xylene vapor during pregnancy showed embryo/fetotoxic effects. Ethanol has demonstrated human effects of teratogenicity.

Further information Symptoms may be delayed.

12. Ecological Information

Cat Gasoline

Ecotoxicological data Components		Species	Test Results
1,2,4-Trimethylbenzene (CAS	95-63-6)	·	
Aquatic			
Fish	LC50	Fathead minnow (Pimephales promelas)	7.19 - 8.28 mg/l, 96 hours
Benzene (CAS 71-43-2)			
Aquatic			
Crustacea	EC50	Water flea (Daphnia magna)	8.76 - 15.6 mg/l, 48 hours
Fish	LC50	Rainbow trout,donaldson trout (Oncorhynchus mykiss)	5.3 mg/l, 96 hours
Cumene (CAS 98-82-8)			
Aquatic			
Crustacea	EC50	Brine shrimp (Artemia sp.)	3.55 - 11.29 mg/l, 48 hours
Fish	LC50	Rainbow trout,donaldson trout (Oncorhynchus mykiss)	2.7 mg/l, 96 hours
Cyclohexane (CAS 110-82-7)			
Aquatic			
Fish	LC50	Fathead minnow (Pimephales promelas)	3.961 - 5.181 mg/l, 96 hours
Ethylbenzene (CAS 100-41-4) Aquatic			
Crustacea	EC50	Water flea (Daphnia magna)	1 - 4 mg/l, 48 hours
Fish	LC50	Rainbow trout,donaldson trout (Oncorhynchus mykiss)	4 mg/l, 96 hours
Hydrogen sulfide (CAS 7783-0 Aquatic	6-4)		
Fish	LC50	Lake whitefish (Coregonus clupeaformis)	0.002 mg/l. 96 hours
Naphthalene (CAS 91-20-3)			and a mean
Aquatic			
Crustacea	EC50	Water flea (Daphnia magna)	1.09 - 3.4 mg/l, 48 hours
Fish	LC50	Rainbow trout,donaldson trout (Oncorhynchus mykiss)	0.91 - 2.82 mg/l, 96 hours
n-Hexane (CAS 110-54-3)			
Aquatic			
Fish	LC50	Fathead minnow (Pimephales promelas)	2.101 - 2.981 mg/l, 96 hours
Pentane (CAS 109-66-0)			
Aquatic			
Crustacea	EC50	Daphnia	2.3 mg/l, 48 Hours
Fish	LC50	Fish	3.1 mg/l, 96 Hours
Toluene (CAS 108-88-3)			
Aquatic			
Crustacea	EC50	Water flea (Daphnia magna)	5.46 - 9.83 mg/l, 48 hours
Fish	LC50	Coho salmon,silver salmon (Oncorhynchus kisutch)	5.5 mg/l, 96 hours
Xylene (o, m, p isomers) (CAS	1330-20-7)		
Aquatic			
Fish	LC50	Rainbow trout,donaldson trout (Oncorhynchus mykiss)	8 mg/l, 96 Hours
Ecotoxicity	Contains a	substance which causes risk of hazardous ef	fects to the environment.
Environmental effects		ct contains a substance which is toxic to aquat adverse effects in the aquatic environment.	ic organisms and which may cause

4172 Version #: 03 Revison date: 11-13-2012 Print date: 11-13-2012 13 / 18
Prepared by 3E Company

Aquatic toxicity Toxic to aquatic organisms. May cause long-term adverse effects in the aquatic environment.

Persistence and degradability Bioaccumulation /

Not available. Not available.

Accumulation

Partition coefficient

| Benzene | 2.13 | Toluene | 2.73 | Cyclopentane | 3 | Ethylpenzene | 3 | 15 |

Ethylbenzene 3.15 Xylene (o, m, p isomers) 3.2 Pentane 3.39 Cyclohexane 3.44 Hexane (Other Isomers) 3.6 Cumene 3.66 n-Hexane 3.9 n-Heptane 4.66 n-Nonane 5.46

13. Disposal Considerations

Waste codes D001: Waste Flammable material with a flash point <140 °F

D018: Waste Benzene

Disposal instructions Dispose in accordance with all applicable regulations. Dispose of this material and its container to

hazardous or special waste collection point. Incinerate the material under controlled conditions in an approved incinerator. Do not allow this material to drain into sewers/water supplies. Do not

contaminate ponds, waterways or ditches with chemical or used container.

14. Transport Information

DOT

Basic shipping requirements:

UN number UN1203
Proper shipping name Gasoline
Hazard class 3
Packing group II

Additional information:

Special provisions 139, B33, B101, T8

Packaging exceptions 150
Packaging non bulk 202
Packaging bulk 242

IATA

UN number UN1203 UN proper shipping name Gasoline

Transport hazard class(es) 3
Packing group II
ERG code 3H

IMDG

UN number UN1203 UN proper shipping name Gasoline Transport hazard class(es) 3

Packing group

Marine pollutant No. EmS F-E, S-E

TDG

Proper shipping name GASOLINE; MOTOR SPIRIT; or PETROL, MARINE POLLUTANT

Hazard class 3
UN number UN1203
Packing group II
Marine pollutant Yes
Special provisions 17

Cat Gasoline

4172 Version #: 03 Revison date: 11-13-2012 Print date: 11-13-2012 14 / 18

15. Regulatory Information

US federal regulations

This product is a "Hazardous Chemical" as defined by the OSHA Hazard Communication

Standard 29 CFR 1910.1200 (OSHA) and 8 CCR § 5194 (Cal/OSHA).

All components are on the U.S. EPA TSCA Inventory List.

TSCA Section 12(b) Export Notification (40 CFR 707, Subpt. D)

n-Nonane (CAS 111-84-2)

1.0 % One-Time Export Notification only.

Clean Air Act (CAA) Section 112 Hazardous Air Pollutants (HAPs) List

Benzene (CAS 71-43-2) Cumene (CAS 98-82-8) Ethylbenzene (CAS 100-41-4) Naphthalene (CAS 91-20-3) n-Hexane (CAS 110-54-3) Toluene (CAS 108-88-3)

Xylene (o, m, p isomers) (CAS 1330-20-7)

US EPCRA (SARA Title III) Section 302 - Extremely Hazardous Spill: Reportable quantity

Hydrogen sulfide (CAS 7783-06-4) 100 LBS

US EPCRA (SARA Title III) Section 302 - Extremely Hazardous Substance: Threshold Planning Quantity

Hydrogen sulfide (CAS 7783-06-4) 500 LBS

US EPCRA (SARA Title III) Section 313 - Toxic Chemical: De minimis concentration

1.2.4-Trimethylbenzene (CAS 95-63-6) 1.0 % Benzene (CAS 71-43-2) 0.1 % Cumene (CAS 98-82-8) 1.0 % Cyclohexane (CAS 110-82-7) 1.0 % Ethylbenzene (CAS 100-41-4) 0.1 % Naphthalene (CAS 91-20-3) 0.1 % n-Hexane (CAS 110-54-3) 1.0 % Toluene (CAS 108-88-3) 1.0 % Xylene (o, m, p isomers) (CAS 1330-20-7) 1.0 %

US EPCRA (SARA Title III) Section 313 - Toxic Chemical: Listed substance

1,2,4-Trimethylbenzene (CAS 95-63-6) Listed. Benzene (CAS 71-43-2) Listed. Cumene (CAS 98-82-8) Listed. Cyclohexane (CAS 110-82-7) Listed. Ethylbenzene (CAS 100-41-4) Listed. Naphthalene (CAS 91-20-3) Listed. n-Hexane (CAS 110-54-3) Listed. Toluene (CAS 108-88-3) Listed. Xylene (o, m, p isomers) (CAS 1330-20-7) Listed.

CERCLA (Superfund) reportable quantity (lbs) (40 CFR 302.4)

Hexane (Other Isomers): 100 Toluene: 1000

Xylene (o, m, p isomers): 100

Benzene: 10
Cumene: 5000
Cyclohexane: 1000
Ethylbenzene: 1000
Pentane: 100
n-Hexane: 5000
Cyclopentane: 100
Naphthalene: 100
n-Nonane: 100
Hydrogen sulfide: 100

Superfund Amendments and Reauthorization Act of 1986 (SARA)

Hazard categories Immediate Hazard - Yes

Delayed Hazard - Yes Fire Hazard - Yes Pressure Hazard - No Reactivity Hazard - No

Section 302 extremely No

hazardous substance (40 CFR 355, Appendix A)

Prepared by 3E Company

Section 311/312 (40 CFR No 370)

Drug Enforcement

Administration (DEA) (21 CFR

1308.11-15)

Not controlled

WHMIS status Controlled

WHMIS classification B2 - Flammable Liquids

> D1A - Immediate/Serious-VERY TOXIC D2A - Other Toxic Effects-VERY TOXIC D2B - Other Toxic Effects-TOXIC

WHMIS labeling

Inventory status

Country(s) or region	Inventory name	On inventory (yes/no)*
Australia	Australian Inventory of Chemical Substances (AICS)	Yes
Canada	Domestic Substances List (DSL)	Yes
Canada	Non-Domestic Substances List (NDSL)	No
China	Inventory of Existing Chemical Substances in China (IECSC)	Yes
Europe	European Inventory of Existing Commercial Chemical Substances (EINECS)	Yes
Europe	European List of Notified Chemical Substances (ELINCS)	No
Japan	Inventory of Existing and New Chemical Substances (ENCS)	No
Korea	Existing Chemicals List (ECL)	Yes
New Zealand	New Zealand Inventory	Yes
Philippines	Philippine Inventory of Chemicals and Chemical Substances (PICCS)	No

Yes

Toxic Substances Control Act (TSCA) Inventory

*A "Yes" indicates this product complies with the inventory requirements administered by the governing country(s)

State regulations

United States & Puerto Rico

US - California Hazardous Substances (Director's): Listed substance

1,2,4-Trimethylbenzene (CAS 95-63-6) Listed. Benzene (CAS 71-43-2) Listed. Cumene (CAS 98-82-8) Listed. Cyclohexane (CAS 110-82-7) Listed. Cyclopentane (CAS 287-92-3) Listed. Ethylbenzene (CAS 100-41-4) Listed. Hexane (Other Isomers) (CAS 96-14-0) Listed. Hydrogen sulfide (CAS 7783-06-4) Listed. Naphthalene (CAS 91-20-3) Listed. n-Heptane (CAS 142-82-5) Listed. n-Hexane (CAS 110-54-3) Listed. n-Nonane (CAS 111-84-2) Listed. Pentane (CAS 109-66-0) Listed. Toluene (CAS 108-88-3) Listed. Xylene (o, m, p isomers) (CAS 1330-20-7) Listed.

US - California Proposition 65 - Carcinogens & Reproductive Toxicity (CRT): Listed substance

Benzene (CAS 71-43-2) Listed. Cumene (CAS 98-82-8) Listed. Ethylbenzene (CAS 100-41-4) Listed. Naphthalene (CAS 91-20-3) Listed. Toluene (CAS 108-88-3) Listed.

US - California Proposition 65 - CRT: Listed date/Carcinogenic substance

Benzene (CAS 71-43-2) Listed: February 27, 1987 Carcinogenic. Cumene (CAS 98-82-8) Listed: April 6, 2010 Carcinogenic. Ethylbenzene (CAS 100-41-4) Listed: June 11, 2004 Carcinogenic. Naphthalene (CAS 91-20-3) Listed: April 19, 2002 Carcinogenic.

Cat Gasoline

4172 Version #: 03 Revison date: 11-13-2012 Print date: 11-13-2012 16 / 18

US - California Proposition 65 - CRT: Listed date/Developmental toxin

Benzene (CAS 71-43-2)

Listed: December 26, 1997 Developmental toxin.

Listed: January 1, 1991 Developmental toxin.

US - California Proposition 65 - CRT: Listed date/Female reproductive toxin

Toluene (CAS 108-88-3)

Listed: August 7, 2009 Female reproductive toxin.

US - California Proposition 65 - CRT: Listed date/Male reproductive toxin

Benzene (CAS 71-43-2) Listed: December 26, 1997 Male reproductive toxin.

US - New Jersey RTK - Substances: Listed substance

1,2,4-Trimethylbenzene (CAS 95-63-6) Listed. Benzene (CAS 71-43-2) Listed. Cumene (CAS 98-82-8) Listed. Cyclohexane (CAS 110-82-7) Listed. Cyclopentane (CAS 287-92-3) Listed. Ethylbenzene (CAS 100-41-4) Listed. Hydrogen sulfide (CAS 7783-06-4) Listed. Naphthalene (CAS 91-20-3) Listed. n-Heptane (CAS 142-82-5) Listed. n-Hexane (CAS 110-54-3) Listed. n-Nonane (CAS 111-84-2) Listed. Pentane (CAS 109-66-0) Listed. Toluene (CAS 108-88-3) Listed. Xylene (o, m, p isomers) (CAS 1330-20-7) Listed.

US - Pennsylvania RTK - Hazardous Substances: Special hazard

Benzene (CAS 71-43-2) Special hazard.

US. Massachusetts RTK - Substance List

1,2,4-Trimethylbenzene (CAS 95-63-6) Listed. Benzene (CAS 71-43-2) Listed. Cumene (CAS 98-82-8) Listed. Cyclohexane (CAS 110-82-7) Listed. Cyclopentane (CAS 287-92-3) Listed. Ethylbenzene (CAS 100-41-4) Listed. Hexane (Other Isomers) (CAS 96-14-0) Listed. Hydrogen sulfide (CAS 7783-06-4) Listed. Naphthalene (CAS 91-20-3) Listed. n-Heptane (CAS 142-82-5) Listed. n-Hexane (CAS 110-54-3) Listed. n-Nonane (CAS 111-84-2) Listed. Pentane (CAS 109-66-0) Listed. Toluene (CAS 108-88-3) Listed. Xylene (o, m, p isomers) (CAS 1330-20-7) Listed.

US. New Jersey Worker and Community Right-to-Know Act

1,2,4-Trimethylbenzene (CAS 95-63-6) 500 LBS Benzene (CAS 71-43-2) 500 LBS Cumene (CAS 98-82-8) 500 LBS Cyclohexane (CAS 110-82-7) 500 LBS Ethylbenzene (CAS 100-41-4) 500 LBS Hydrogen sulfide (CAS 7783-06-4) 500 LBS Naphthalene (CAS 91-20-3) 500 LBS n-Hexane (CAS 110-54-3) 500 LBS Pentane (CAS 109-66-0) 500 LBS Toluene (CAS 108-88-3) 500 LBS Xylene (o, m, p isomers) (CAS 1330-20-7) 500 LBS

US. Pennsylvania RTK - Hazardous Substances

1,2,4-Trimethylbenzene (CAS 95-63-6) Listed. Benzene (CAS 71-43-2) Listed. Cumene (CAS 98-82-8) Listed. Cyclohexane (CAS 110-82-7) Listed. Cyclopentane (CAS 287-92-3) Listed. Ethylbenzene (CAS 100-41-4) Listed. Hexane (Other Isomers) (CAS 96-14-0) Listed. Hydrogen sulfide (CAS 7783-06-4) Listed. Naphthalene (CAS 91-20-3) Listed. n-Heptane (CAS 142-82-5) Listed.

Cat Gasoline

4172 Version #: 03 Revison date: 11-13-2012 Print date: 11-13-2012 17 / 18

 n-Hexane (CAS 110-54-3)
 Listed.

 n-Nonane (CAS 111-84-2)
 Listed.

 Pentane (CAS 109-66-0)
 Listed.

 Toluene (CAS 108-88-3)
 Listed.

 Xylene (o, m, p isomers) (CAS 1330-20-7)
 Listed.

16. Other Information

Other information Note: This Material Safety Data Sheet applies to the listed products and synonym descriptions for

Hazard Communication purposes only. Technical Specifications vary greatly depending on the products and are not reflected in this document. Consult specification sheets for technical

information.

HMIS® ratings Health: 2*

Flammability: 4 Physical hazard: 0

NFPA ratings Health: 2

Flammability: 4 Instability: 0

Disclaimer This Material Safety Data Sheet (MSDS) was prepared in accordance with 29 CFR 1910.1200 by

Valero Marketing & Supply Co., ("VALERO"). VALERO does not assume any liability arising out of product use by others. The information, recommendations, and suggestions presented in this MSDS are based upon test results and data believed to be reliable. The end user of the product has the responsibility for evaluating the adequacy of the data under the conditions of use, determining the safety, toxicity and suitability of the product under these conditions, and obtaining additional or clarifying information where uncertainty exists. No guarantee expressed or implied is

made as to the effects of such use, the results to be obtained, or the safety and toxicity of the product in any specific application. Furthermore, the information herein is not represented as absolutely complete, since it is not practicable to provide all the scientific and study information in the format of this document, plus additional information may be necessary under exceptional

conditions of use, or because of applicable laws or government regulations.

4172 Version #: 03 Revison date: 11-13-2012 Print date: 11-13-2012

18 / 18